首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46896篇
  免费   3421篇
  国内免费   19篇
  2023年   145篇
  2022年   124篇
  2021年   748篇
  2020年   568篇
  2019年   683篇
  2018年   1031篇
  2017年   908篇
  2016年   1483篇
  2015年   2333篇
  2014年   2681篇
  2013年   3001篇
  2012年   3952篇
  2011年   3792篇
  2010年   2416篇
  2009年   2207篇
  2008年   3041篇
  2007年   2921篇
  2006年   2551篇
  2005年   2369篇
  2004年   2172篇
  2003年   1867篇
  2002年   1615篇
  2001年   1302篇
  2000年   1229篇
  1999年   985篇
  1998年   385篇
  1997年   332篇
  1996年   232篇
  1995年   215篇
  1994年   210篇
  1993年   179篇
  1992年   326篇
  1991年   298篇
  1990年   266篇
  1989年   228篇
  1988年   180篇
  1987年   163篇
  1986年   132篇
  1985年   109篇
  1984年   81篇
  1983年   87篇
  1982年   79篇
  1981年   56篇
  1980年   55篇
  1979年   71篇
  1978年   53篇
  1977年   55篇
  1976年   46篇
  1975年   45篇
  1974年   63篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
Han  Seungsu  Lee  Yeongmok  Park  Eun Joo  Min  Myung Ki  Lee  Yongsang  Kim  Tae-Houn  Kim  Beom-Gi  Lee  Sangho 《Plant molecular biology》2019,100(3):319-333
Plant Molecular Biology - We determined the structure of OsPYL/RCAR3:OsPP2C50 complex with pyrabactin. Our results suggest that a less-conserved phenylalanine of OsPYL/RCAR subfamily I is...  相似文献   
992.
Yu  Si-in  Kim  Hyojin  Yun  Dae-Jin  Suh  Mi Chung  Lee  Byeong-ha 《Plant molecular biology》2019,99(1-2):135-148
Plant Molecular Biology - A Kelch repeat F-box containing protein, SMALL AND GLOSSY LEAVES1 (SAGL1) regulates phenylpropanoid biosynthesis as a post-translational regulator for PAL1 (phenylalanine...  相似文献   
993.

The porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family, which causes acute diarrhea in pigs with higher mortality in piglets less than 2 weeks old. The PEDV is one of the major concerns of the pig industry around the world, including Asian countries and Noth America since first identified in Europe. Currently, there is no PEDV licensed vaccine to effectively prevent this disease. This study was performed for the development of a mucosal PEDV vaccine and B subunit of cholera toxin (CTB) as a carrier was employed to surpass the tolerogenic nature of GALT and induce potent immune responses against the target antigen fused to CTB. An epitope (S1D) alone or conjugated with CTB was constructed into the tobacco chloroplasts expression vector which is controlled under the chloroplast rRNA operon promoter with T7g10 5′ UTR and the psbA 3′UTR as a terminator. The homoplastomic lines were obtained by third round screening via organogenesis from the leaf tissues which were verified by PCR with antigen and chloroplast specific primers and then confirmed by Southern blot analysis. While the expression level of the S1D alone as detected by Western blotting was approximately 0.07% of total soluble protein, the CTB-S1D fusion protein was expressed up to 1.4%. The fusion protein showed binding to the intestinal membrane GM1-ganglioside receptor, demonstrating its functionality. The result shows that the highest expression of S1D could be achieved by fusion with a stable CTB protein and chloroplast transformation. Furthermore, the CTB-S1D expressed in chloroplasts of Nicotiana tabacum cv. Maryland could be assembled to pentameric form which increases the possibility to develop a mucosal vaccine against PEDV.

  相似文献   
994.
A key point of protein stability engineering is to identify specific target residues whose mutations can stabilize the protein structure without negatively affecting the function or activity of the protein. Here, we propose a method called RiSLnet (Rapid i dentification of Smart mutant Library using residue network) to identify such residues by combining network analysis for protein residue interactions, identification of conserved residues, and evaluation of relative solvent accessibility. To validate its performance, the method was applied to four proteins, that is, T4 lysozyme, ribonuclease H, barnase, and cold shock protein B. Our method predicted beneficial mutations in thermal stability with ~62% average accuracy when the thermal stability of the mutants was compared with the ones in the Protherm database. It was further applied to lysine decarboxylase (CadA) to experimentally confirm its accuracy and effectiveness. RiSLnet identified mutations increasing the thermal stability of CadA with the accuracy of ~60% and significantly reduced the number of candidate residues (~99%) for mutation. Finally, combinatorial mutations designed by RiSLnet and in silico saturation mutagenesis yielded a thermally stable triple mutant with the half-life (T 1/2) of 114.9 min at 58°C, which is approximately twofold higher than that of the wild-type.  相似文献   
995.
Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium–trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast–endothelium interactions under dynamic culture. In this study, we developed a dynamic three-dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations and expressions of angiogenic markers, cluster of differentiation 31 (CD31), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), and vascular endothelial growth factor A (VEGFA). Bioprinting favored colocalization of trophoblasts with endothelial cells, similar to in vivo observations. Additional analysis revealed that trophoblasts reduced the angiogenic responses by reducing network formation and motility rates while inducing apoptosis of endothelial cells. Moreover, the presence of endothelial cells appeared to inhibit trophoblast invasion rates. These results clearly demonstrated the utility and potential of bioprinting and perfusion bioreactor system to model trophoblast–endothelium interactions in vitro. Our bioprinted placenta model represents a crucial step to develop advanced research approach that will expand our understanding and treatment options of preeclampsia and other pregnancy-related pathologies.  相似文献   
996.
Endogenous bone marrow-derived mesenchymal stem cells (BM-MSCs) are mobilized into peripheral blood and injured tissues by various growth factors and cytokines that are expressed in the injured tissues, such as substance P (SP), stromal cell derived factor-1 (SDF-1), and transforming growth factor-beta (TGF-β). Extracellular bioactive lipid metabolites such as ceramide-1-phosphate and sphingosine-1-phosphate also modulate BM-MSC migration as SP, SDF-1, and TGF-β. However, the roles of intrinsic lipid kinases of BM-MSCs in the stem cell migration are unclear. Here, we demonstrated that ceramide kinase mediates the chemotactic migration of BM-MSCs in response to SP, SDF-1, or TGF-β. Furthermore, a specific inhibitor of ceramide kinase inhibited TGF-β-induced migration of BM-MSCs and N-cadherin that is necessary for BM-MSCs migration in response to TGF-β. Therefore, these results suggest that the intracellular ceramide kinase is required for the BM-MSCs migration and the roles of the intrinsic ceramide kinase in the migration are associated with N-cadherin regulation.  相似文献   
997.
Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.  相似文献   
998.
Expressing, isolating, and characterizing recombinant proteins is crucial to many disciplines within the biological sciences. Different molecular tagging technologies have been developed to enable each individual step of protein production, from expression through purification and characterization. Monitoring the entire production process requires multiple tags or molecular interactions, because no individual tag has provided the comprehensive breadth of utility. An ideal molecular tag is small and does not interrupt expression, solubility, folding or function of the protein being purified and can be used throughout the production process. We adapted and integrated a split-luciferase system (NanoBiT®, Promega ®) to perform the range of techniques essential to protein production. We developed a simple method to monitor protein expression in real time to optimize expression conditions. We constructed a novel affinity chromatography system using the split-luciferase system to enable purification. We adapted western blot analysis, enzyme-linked immunosorbent assay, and cell-based bioassay to characterize the expressed proteins. Our results demonstrate that a single-tag can fulfill all aspects needed throughout protein production.  相似文献   
999.
On-site genetic detection needs to develop a sensitive and straightforward biosensor without special equipment, which can detect various genetic biomarkers. Hybridization chain reaction (HCR) amplifying signal isothermally could be considered as a good candidate for on-site detection. Here, we developed a novel genetic biosensor on the basis of enzyme-free dual-amplification of universal hybridization chain reaction (uHCR) and hemin/G-quadruplex horseradish peroxidase (HRP)-mimicking DNAzyme. The uHCR is the strategy which enables simple design for multiple target detection by the introduction of target-specific trigger hairpin without changing the whole system according to a target change. Also, HRP-mimicking DNAzyme could produce a sensitive and quantitative colorimetric signal with increased stability with a limit of detection (LOD) of 5.67 nM. The universality of the uHCR biosensor was proven by the detection of four different targets (miR-21, miR-125b, KRAS-Q61K, and BRAF-V600E) for cancer diagnosis. The uHCR biosensor showed specificity that could discriminate single-nucleotide polymorphism. Moreover, the uHCR biosensor could detect targets in the diluted serum sample. Overall, the uHCR biosensor demonstrated the potential for field testing with a simple redesign without complicated steps or special equipment using a universal hairpin system and enzyme-free amplification. This strategy could enable stable and sensitive detection of a variety of targets. Therefore, it could be applied to urgent detection of various pathogens, remote diagnosis, and self-screening of diseases.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号